MAT 539: Algebraic Topology, Homework Problems

Dennis Sullivan

(1) Draw the image of a system of parallel lines under the inversion $z \mapsto$ $1 / z$. Prove it.
(2) Let

$$
P(z)=y^{n}+b_{1}(z) y^{n-1}+b_{2}(z) y^{n-2} \cdots++b_{n-1}(z) y+b_{0}(z)
$$

be a monic polynomial of degree n on y, such that the coefficients $b_{i}(z)$ are polynomial functions of z. Prove that if $P(z)$ has n distinct roots for some value of z then there are also n distinct roots for all but finitely many values of z. (Hint: Use the discriminant. Example: If $P(z)=y^{2}+b(z) y+c(z)$ then the discriminant equals $\left.(b(z))^{2}-4 c(z)\right)$.
(3) Make a picture of the three-sheeted surface cover of the completed z plane associated to the equation $y^{3}=(z-a)(z-b)(z-c)$, where a, b and c are distinct complex numbers (remember that the completion is done by adding into the surface the appropriate number of points over the points of infinity of the z-plane)
(4) What is the multiple connectivity of a surface of genus two? Draw a sequence of pictures like the ones made in class going from the torus to a disk for the surface of genus two going to a disk.

